Graphs whose Kronecker covers are bipartite Kneser graphs

نویسندگان

چکیده

We show that there are k simple graphs whose Kronecker covers isomorphic to the bipartite Kneser graph H ( n , ) and determine automorphism groups of these graphs. Using neighborhood complexes graphs, we also chromatic numbers coincide with ? K = ? 2 + .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bipartite Kneser Graphs are Hamiltonian

The Kneser graph K(n, k) has as vertices all k-element subsets of [n] := {1, 2, . . . , n} and an edge between any two vertices (=sets) that are disjoint. The bipartite Kneser graph H(n, k) has as vertices all k-element and (n−k)-element subsets of [n] and an edge between any two vertices where one is a subset of the other. It has long been conjectured that all connected Kneser graphs and bipar...

متن کامل

Packing Bipartite Graphs with Covers of Complete Bipartite Graphs

For a set S of graphs, a perfect S-packing (S-factor) of a graph G is a set of mutually vertex-disjoint subgraphs of G that each are isomorphic to a member of S and that together contain all vertices of G. If G allows a covering (locally bijective homomorphism) to a graph H, i.e., a vertex mapping f : VG → VH satisfying the property that f(u)f(v) belongs to EH whenever the edge uv belongs to EG...

متن کامل

Some Families of Graphs whose Domination Polynomials are Unimodal

Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.

متن کامل

Sparse Kneser graphs are Hamiltonian

For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) is the graph whose vertices are the k-element subsets of {1, . . . , n} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k + 1, k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k ≥ 3, the odd graph K(2k + 1,...

متن کامل

Bipartite Graphs Whose Edge Algebras Are Complete Intersections

Let R be monomial sub-algebra of k[x1, . . . , xN ] generated by square free monomials of degree two. This paper addresses the following question: when is R a complete intersection? For such a k-algebra we can associate a graph G whose vertices are x1, . . . , xN and whose edges are {(xi, xj)|xixj ∈ R}. Conversely, for any graph G with vertices {x1, . . . , xN} we define the edge algebra associ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2021

ISSN: ['1872-681X', '0012-365X']

DOI: https://doi.org/10.1016/j.disc.2020.112264