Graphs whose Kronecker covers are bipartite Kneser graphs
نویسندگان
چکیده
We show that there are k simple graphs whose Kronecker covers isomorphic to the bipartite Kneser graph H ( n , ) and determine automorphism groups of these graphs. Using neighborhood complexes graphs, we also chromatic numbers coincide with ? K = ? 2 + .
منابع مشابه
Bipartite Kneser Graphs are Hamiltonian
The Kneser graph K(n, k) has as vertices all k-element subsets of [n] := {1, 2, . . . , n} and an edge between any two vertices (=sets) that are disjoint. The bipartite Kneser graph H(n, k) has as vertices all k-element and (n−k)-element subsets of [n] and an edge between any two vertices where one is a subset of the other. It has long been conjectured that all connected Kneser graphs and bipar...
متن کاملPacking Bipartite Graphs with Covers of Complete Bipartite Graphs
For a set S of graphs, a perfect S-packing (S-factor) of a graph G is a set of mutually vertex-disjoint subgraphs of G that each are isomorphic to a member of S and that together contain all vertices of G. If G allows a covering (locally bijective homomorphism) to a graph H, i.e., a vertex mapping f : VG → VH satisfying the property that f(u)f(v) belongs to EH whenever the edge uv belongs to EG...
متن کاملSome Families of Graphs whose Domination Polynomials are Unimodal
Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.
متن کاملSparse Kneser graphs are Hamiltonian
For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) is the graph whose vertices are the k-element subsets of {1, . . . , n} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k + 1, k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k ≥ 3, the odd graph K(2k + 1,...
متن کاملBipartite Graphs Whose Edge Algebras Are Complete Intersections
Let R be monomial sub-algebra of k[x1, . . . , xN ] generated by square free monomials of degree two. This paper addresses the following question: when is R a complete intersection? For such a k-algebra we can associate a graph G whose vertices are x1, . . . , xN and whose edges are {(xi, xj)|xixj ∈ R}. Conversely, for any graph G with vertices {x1, . . . , xN} we define the edge algebra associ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2021
ISSN: ['1872-681X', '0012-365X']
DOI: https://doi.org/10.1016/j.disc.2020.112264